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production from xylose but also that ARSdR is preferable 
for xylose fermentation.
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Introduction

Lignocellulosic biomass has been recognized as a poten-
tial sustainable source of fermentable sugars and allows for 
expanding ethanol production without further affecting the 
food and feed markets [33]. Lignocellulosic hydrolysates, 
especially those produced from herbaceous and hard-
wood biomass, are rich in xylose, which is released from 
hydrolysis of hemicellulose, in addition to glucose from 
cellulose. Therefore, xylose needs to be fermented to real-
ize the full potential of economic ethanol production from 
biomass. Although Saccharomyces cerevisiae is unable to 
produce ethanol from xylose, a capacity for fermentation 
can be conferred by introduction of three xylose-assimilat-
ing genes: XYL1 (xylose reductase, XR) and XYL2 (xylitol 
dehydrogenase, XDH) from Scheffersomyces stipitis, and 
XKS1 (xylulokinase, XK) from S. cerevisiae [12].

Xylose fermentation by recombinant S. cerevisiae pro-
duces xylitol as an undesired byproduct [4]. Moreover, the 
rate of xylose utilization by recombinant S. cerevisiae is 
generally one to two orders of magnitude lower than that 
of glucose utilization [10]. Various strategies have been 
applied to engineer Saccharomyces strains capable of effi-
ciently producing ethanol from xylose, including the intro-
duction of xylose transport, improvement of the initial 
xylose assimilation, changing the intracellular redox bal-
ance, and overexpression of pentose phosphate pathways 
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[26, 36]. In addition to the higher activity of XDH relative 
to XR, increased activity of both XR and XDH has been 
found to be important for generating an efficient xylose-
fermenting recombinant S. cerevisiae strain [6, 16, 18, 29, 
37]. XR is NADPH specific and XDH is NAD+ specific. 
To improve the intracellular redox balance, Watanabe et al. 
constructed a protein-engineered NADP+-dependent XDH 
(ARSdR) that showed >4,500-fold higher values of kcat/Km 
for NADP+ than the wild-type NAD+-dependent XDH of 
S. stipitis [38]. Recombinant yeast strains with ARSdR 
show increased ethanol production from xylose accompa-
nied by decreased xylitol production [24, 25, 27, 39].

The selection of host strains is important for practical 
application of xylose fermentation by recombinant S. cer-
evisiae. Industrial S. cerevisiae strains are generally robust 
and superior ethanol producers under industrial conditions 
[11]. Some industrial strains have shown more tolerance 
to lignocellulosic hydrolysates than laboratory strains [9, 
23, 34]. For further improvement of industrial strains, mat-
ing using haploid strains that have industrially important 
phenotypes is a useful breeding technology that has pro-
vided efficient ethanol production, stress tolerance, and an 
extended substrate range including xylose to the resultant 
strains [1, 13, 14, 19, 20, 31, 32, 41].

S. cerevisiae strains have different d-xylulose-ferment-
ing abilities [5, 26, 27, 40], probably because of differ-
ences in the pentose-phosphate-pathway flux linking the 
xylose-to-xylulose pathway to glycolysis [17]. These inher-
ent differences for the xylulose consumption rate have 
been reported to have an impact on xylose fermentation by 
recombinant strains [27, 28].

S. cerevisiae IR-2 is an industrial diploid strain hav-
ing superior xylulose-fermenting performance [27, 28]. 

The engineered IR-2 strain expressing XR and XDH (or 
ARSdR) with enhanced XK activity had higher xylose 
fermentation ability than several other industrial diploid 
strains [7, 27, 28]; thus, IR-2 is considered to be a prom-
ising source of haploids to use for breeding novel xylose-
utilizing S. cerevisiae strains. The aim of this study was 
to examine the availability of haploid strains having the 
genetic background of IR-2 through breeding of diploid 
strains using the mating reaction. Rapid xylulose-fer-
menting haploid strains have been successfully isolated 
from IR-2. Hybrid strains mated with each recombinant 
haploid strain harboring the three xylose-assimilating 
genes, XR, XDH (or ARSdR), and XK, were character-
ized and compared with recombinant xylose-fermenting 
IR-2 strains.

Materials and methods

Microorganisms and plasmids

The yeast strains used in this study are listed in Table  1. 
The diploid S. cerevisiae IR-2 and its haploid strains were 
used as the recipient yeast strain for expression of enzymes 
involved in xylose metabolism. BY4741 (MATa) and 
BY4742 (MATα) were used to determine the mating types 
of haploid strains derived from IR-2. These strains were 
grown on yeast peptone dextrose (YPD) medium (20  g/L 
glucose, 20 g/L peptone, 10 g/L yeast extract) unless oth-
erwise noted. Aureobasidin A (Takara Bio, Kyoto, Japan) 
was added at 0.5 mg/L for selection of transformants. Two 
chromosome-integrating expression plasmids, pAUR-
XKXDHXR and pAUR-XKARSdRXR, were constructed 

Table 1   S. cerevisiae strains and plasmids used in this study

Strain/plasmid Relevant genotype Reference

S. cerevisiae strains

 ENB2004 Haploid of IR-2, MATα This study

 ENB2024 ENB2004, AUR1::[PGK1p-XKS1-PGK1t, PGK1p-ARSdR-PGK1t, PGK1p-XYL1-PGK1t] This study

 ENB3002 Haploid of IR-2, MATa This study

 ENB3009 ENB3002, AUR1::[PGK1p-XKS1-PGK1t, PGK1p-XYL2-PGK1t, PGK1p-XYL1-PGK1t] This study

 ENB4003 Mating of ENB2004 and ENB3002, MATa/α This study

 SE12 Mating of ENB2024 and ENB3009, MATa/α This study

 MA-R4 IR-2, AUR1::[PGK1p-XKS1-PGK1t, PGK1p-XYL2-PGK1t, PGK1p-XYL1-PGK1t] [28]

 MA-R5 IR-2, AUR1::[PGK1p-XKS1-PGK1t, PGK1p-ARSdR-PGK1t, PGK1p-XYL1-PGK1t] [27]

 IR-2 Alcohol-fermenting flocculent yeast, MATa/α [21]

 BY4741 his3Δ1, leu2Δ0, met15Δ0, ura3Δ0, MATa [3]

 BY4742 his3Δ1, leu2Δ0, lys2Δ0, ura3Δ0, MATα [3]

Plasmids

 pAUR-XKXDHXR PGK1p-XKS1-PGK1t, PGK1p-XYL2-PGK1t, PGK1p-XYL1-PGK1t, AUR1-C [25]

 pAUR-XKARSdRXR PGK1p-XKS1-PGK1t, PGK1p-ARSdR-PGK1t, PGK1p-XYL1-PGK1t, AUR1-C [25]
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as described previously and used for expression of XR, 
XDH (or ARSdR), and XK in the recombinant strains [25].

Yeast transformation

The plasmid pAUR-XKXDHXR (or pAUR-XKARS-
dRXR) digested with BsiWI was transformed into IR-2 and 
the haploid strains by the lithium acetate method [8], and it 
was chromosomally integrated into the aur1 locus of host 
strains. Transformation was conducted by the Yeastmaker 
system (Clontech, Mountainview, CA, USA) following the 
manufacturer’s instructions. Chromosomal integration of 
the plasmid in the recombinant strain was confirmed by 
PCR.

Isolation of haploids

IR-2 cells grown on a YPD agar plate were pasted on a 
sporulation agar plate (10  g/L potassium acetate, 20  g/L 
agar) and incubated at 30 °C for 5 days to induce sporu-
lation. Haploid strains were isolated by ethanol treatment 
of the sporulated cells as described by Kurose et al. [22]. 
A loopful of the sporulated cells was treated with 1  mL 
of 40  % (v/v) ethanol to kill surviving vegetative cells 
at 25  °C for 20  min. The spore solution was washed in 
distilled water and then spread on an eosin–amaranth 
(EA) agar plate [20  g/L glucose, 1  g/L peptone, 1  g/L 
yeast extract, 1.5 g/L KH2PO4, 1.5 g/L (NH4)2SO4, 1 g/L 
MgSO4.•7H2O, 0.01 g/L eosin Y (Nacalai Tesque, Kyoto, 
Japan), 0.02  g/L amaranth (Acid Red 27, Tokyo Chemi-
cal Industry, Tokyo, Japan), and 20 g/L agar, pH 5.0] [22]. 
Haploid and diploid cells were observed as dark red and 
pink colonies on the EA agar plate, respectively, after 
incubation at 30 °C for 3 days. The dark red colonies were 
isolated on a YPD agar or a synthetic defined (SD) agar 
plate [20 g/L glucose (or 20 g/L xylulose), 0.67 g/L yeast 
nitrogen base without amino acids (Difco, Detroit, Michi-
gan, USA), 20 g/L agar].

Mating reaction

The haploid culture grown with YPD medium at 30  °C 
was equally mixed with each BY4741 and BY4742 culture 
grown under the same conditions. The mixture was incu-
bated overnight at 30  °C and spread on EA agar plates. 
The mating type was distinguished by the colony color on 
the plate; mated cells were colored pink, and non-mated 
cells or haploid cells alone (control) were colored dark 
red. Hybrid strains were constructed between IR-2-based 
haploid strains using the same procedure. The mated cul-
ture was spread on EA agar plates, and pink colonies were 
isolated on YPD plates. The isolated strains were stored at 
−80 °C prior to use.

Enzymatic activities

S. cerevisiae strains were grown with YPD medium for 
36  h at 30  °C and harvested by centrifugation at 5,000 
×g for 5 min at 4  °C. The protein extract from the yeast 
cells was prepared following the method of Matsushika 
et  al. [24]. Cells were suspended in Y-PER yeast protein 
extraction reagent with Halt protease inhibitor cocktail 
(Pierce, Rockford, IL, USA). The protein concentration 
was determined by a micro-BCA protein assay kit (Pierce). 
XR activity in the protein extracts was determined by the 
change in OD340nm with 200  mM xylose and 0.15  mM 
NADPH. One unit of enzyme activity was defined as the 
amount of enzyme that oxidized 1  μmol of NADPH per 
min. XDH and ARSdR activity was determined by the 
change in OD340nm with 333 mM xylitol and 1 mM NAD+ 
or NADP+, respectively. One unit of enzyme activity was 
defined as the amount of enzyme that reduced 1 μmol of 
NAD+ or NADP+ per min.

Ethanol fermentation from xylulose

d-Xylulose was prepared by isomerization of d-xylose 
[30]. Xylose was not detected in the purified xylulose on 
high-performance liquid chromatography (HPLC) analy-
sis. The haploid and diploid strains were aerobically grown 
with YPD medium for 24  h at 30  °C. Then, pre-cultures 
or washed cells were inoculated into 5  mL of YPDXU 
medium (50  g/L glucose, 20  g/L xylulose, 20  g/L pep-
tone, 10 g/L yeast extract, pH 5.5) at a final concentration 
of 10 % (v/v) or 0.3 g dry cell/L, respectively. Ethanol fer-
mentation was performed at 30 °C for 72 h in a closed bot-
tle (13 mL) with agitation at 100 rpm. Samples (0.1 mL) of 
the fermentation broth were removed at appropriate inter-
vals using a syringe and diluted up to tenfold with sterile 
water. These diluted samples were stored at −30 °C prior 
to use for HPLC analyses.

Ethanol fermentation from xylose

Two types of media were used for xylose fermentation: 
YPX medium (10  g/L yeast extract, 20  g/L peptone, and 
21  g/L xylose) and YPDX medium (10  g/L yeast extract, 
20 g/L peptone, 45 g/L glucose, and 45 g/L xylose). Yeast 
pre-culture was conducted with 30  mL of YPD medium. 
Cells were collected by centrifugation and washed with 
sterile water. After washing, the cells were inoculated 
at OD600nm of 1.5 into 20  mL of fermentation media in 
50  mL serum vials with a butyl stopper and aluminum 
cap. All fermentations were performed at 30 °C with agi-
tation at 100  rpm. Samples (0.2  mL) of the fermentation 
broth were taken at the specified intervals and diluted up 
to fourfold with 8 mM H2SO4. These diluted samples were 
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stored at −30 °C prior to use for HPLC analyses. Ethanol 
yield was calculated based on the amount of ethanol (g) 
produced from the total consumed sugars (g) after 72 h of 
fermentation.

Analytical methods

Concentrations of glucose, xylose, xylulose, xylitol, etha-
nol, glycerol, and acetic acid in fermentation broths were 
determined with HPLC (Jasco, Tokyo, Japan) equipped 
with a refractive index detector (RI-2031Plus, Jasco) using 
an Aminex HPX-87H and Cation H refill guard column 
(Bio-Rad, Hercules, CA, USA). HPLC was operated at 
65 °C with 5 mM H2SO4 as the mobile phase at a flow rate 
of 0.6 mL/min and with an injection volume of 20 μL.

Results and discussion

Isolation of xylulose‑assimilating haploids

To select host strains suitable for breeding by mating, hap-
loid strains having the IR-2 genetic background were iso-
lated. IR-2 formed not only four-spored asci but also many 
two- and three-spored asci on a sporulation agar plate; 
thus, haploid strains were randomly isolated by 40 % (v/v) 
ethanol treatment of sporulated cells. This treatment was 
developed to isolate ethanol-tolerant haploids [22]. The 
mating type of the isolated haploid strains was determined 
by the mating reaction with BY4741 (MATa) and BY4742 
(MATα), and finally 10 and 12 haploid isolates of MATa 
and MATα, respectively, were obtained in the present study.

Xylulose-assimilating ability was evaluated for the hap-
loid isolates because this ability is a major characteristic 
of IR-2 related to efficient xylose fermentation. Ethanol 
fermentation from xylulose was performed using YPDXU 
medium containing 50  g/L glucose and 20  g/L xylulose. 

The pre-culture was inoculated at a final concentration of 
10  % (v/v). The xylulose consumption rates of haploid 
isolates were in the wide range of 0.15–0.55  g/L/h (data 
not shown). The consumption rates of the control strains 
BY4741 and BY4742 were both 0.13 g/L/h. These results 
suggest that the high xylulose-assimilating ability of IR-2 
is predicted to be controlled by multiple heterogenic fac-
tors. We selected ENB2004 (MATα) and ENB3002 (MATa) 
on the basis of maximum xylulose consumption rates. 
These strains showed no autotrophy when growing on SD 
agar plates containing glucose or xylulose as a sole carbon 
source. In addition, the diploid strain ENB4003 (MATa/α) 
obtained by the mating reaction between ENB2004 and 
ENB3002 was confirmed to form spores. The xylulose 
consumption rates of ENB3002 and ENB4003 in YPDXU 
medium were significantly faster than that of the par-
ent strain IR-2 when the initial cell concentration for fer-
mentation was adjusted to approximately 0.3 g dry cell/L 
(Table 2). The diploid strains ENB4003 and IR-2 showed 
slightly higher ethanol yields at 72  h than the haploid 
strains; their ethanol yields were both 0.43 g/g of total con-
sumed sugar (Table 2). These results indicate that the hap-
loid strains ENB2004 and ENB3002 can be used as host 
strains for breeding to incorporate the superior xylulose-
assimilating and ethanol-producing capabilities of IR-2.

Mating of xylose‑fermenting recombinant haploids

Recombinant haploid strains from ENB3002 and 
ENB2004, termed ENB3009 and ENB2024, respectively, 
were constructed for the breeding of xylose-fermenting 
hybrid strains. To evaluate natural selection during the mat-
ing reaction, heterogeneous XDH genes, i.e., wild-type 
NAD+-dependent XDH and NADP+-dependent ARSdR, 
were integrated into the ENB3009 and ENB2024 strains, 
respectively (Table  1). Thirty hybrid strains obtained by 
mating the ENB3009 and ENB2024 strains, harboring 
two sets of xylose-assimilating genes (XRs/heterogene-
ous XDHs/XKs), were screened based upon growth rates 
on YPD and YPX agar plates, and six strains (SE4, 5, 6, 
12, 13, and 14) were selected. The enzymatic activity for 
the initial xylose assimilation in the six strains was com-
pared with that of MA-R4 and MA-R5 prepared from 
recombinant IR-2 with a single set of chromosomally 
integrated xylose-assimilating genes, XR/XDH/XK and 
XR/ARSdR/XK, respectively (Fig.  1). The XR activities 
of six strains were similar to or slightly lower than those 
of strains MA-R4 and MA-R5, indicating that homoge-
neous XR genes in the mating strains did not necessarily 
increase XR activity. Interestingly, significantly higher 
ARSdR activity than XDH activity was observed in all 
hybrid strains except for SE12 (Fig. 1), which implies that 
the redox balance improved by the combination of ARSdR 

Table 2   Fermentation performance of haploid and diploid strains in 
YPDXU medium

Values are the average values of the results from two independ-
ent experiments. The initial cell concentration for fermentation was 
adjusted to approximately 0.3 g dry cell/L
a  Ethanol yield was calculated from the amount of ethanol produced 
after 72 h of fermentation

Strain Xylulose consumption rate
(g xylulose/L/h)

Ethanol yielda

(g/g of total consumed 
sugar)

ENB2004 0.50 ± 0.06 0.41 ± 0.009

ENB3002 0.81 ± 0.03 0.42 ± 0.002

ENB4003 0.73 ± 0.03 0.43 ± 0.002

IR-2 0.64 ± 0.04 0.43 ± 0.007
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and XR is preferred by hybrid strains harboring heteroge-
neous XDHs.

The ARSdR activity of SE4, SE5, and SE6 was signif-
icantly lower than that of MA-R5; the XR/ARSdR ratios 
(ratio of specific enzyme activities) of these strains were 
0.7–0.96. In general, a higher level of XDH activity rela-
tive to XR activity is preferred for ethanol fermentation 
from xylose by recombinant yeast [26]. Xylitol formation 
decreased with a XR/XDH ratio of 0.06–0.1, whereas etha-
nol formation increased [6, 37]. In contrast, a recombinant 
diploid strain expressing engineered XR with higher NADH 
specificity previously showed a low amount of xylitol accu-
mulation and improved ethanol yield at a XR/XDH ratio 
of 0.7 [20]. The difference in cofactor specificity between 
XR and XDH seems to require a high level of XDH. These 
reports suggest that the relatively high ratios of XR/ARSdR 
in SE4, SE5, and SE6 are closely related to growth selec-
tion on YPD and YPX agar plates.

Evaluation of ethanol fermentation from xylose 
by xylose‑fermenting diploid strains

The impact of XDH and ARSdR activities in the xylose-
fermenting performance of diploid strains was evaluated in 
YPX medium containing xylose as the sole carbon source. 
Strain SE12 possessing equal activities for ARSdR and 
XDH (Fig. 1), MA-R4, and MA-R5 were used for this anal-
ysis. The activity of XR and XDH in strain SE12 was simi-
lar to that in MA-R4, and the activity of XR and ARSdR in 
SE12 was almost the same as that in MA-R5. We found that 
SE12 exhibited the same fermentation property as MA-R5 
except for acetic acid production (Fig.  2). This suggests 
that ARSdR, but not XDH, was preferentially utilized in 
the xylose assimilation of SE12 and that the haploid hosts 
used for the construction of the hybrid strain retained the 

appropriate genetic background for xylose fermentation. 
Xylose was almost completely consumed by all strains 
at 72  h (Fig.  2a). SE12 and MA-R5 showed decreased 
xylitol release and increased ethanol production relative 
to MA-R4 (Fig.  2b, c). A similar trend was observed in 
previous reports using other xylose-utilizing yeast strains 
with chromosomal integration of pAUR-XKXDHXR or 
pAUR-XKARSdRXR [24, 25]. SE12, MA-R5, and MA-R4 
excreted 0.93, 1.33, 6.65 g/L xylitol at 72 h, corresponding 
to 4.7, 6.7, and 33 % of the consumed xylose, respectively 
(Fig. 2b). SE12, MA-R5, and MA-R4 produced 5.80, 5.65, 
and 4.82 g/L ethanol at 72 h (Fig. 2c); the ethanol yields 
were estimated at 0.29, 0.28, and 0.24 g per g of consumed 
sugar, respectively.

SE12 and MA-R5 produced higher amounts of glyc-
erol than MA-R4 (Fig. 2d). Glycerol is not only protective 
against osmotic stress but also a more favorable by-product 
than xylitol because less carbon is lost in the three-carbon 
glycerol than in five-carbon xylitol [2, 18]. Anaerobic glyc-
erol production generally originates from excess NADH 
in S. cerevisiae [15, 35]. However, glycerol production in 
MA-R4 was not increased after 12 h regardless of accumu-
lation of xylitol caused by excess NADH (Fig. 2b, d).

Evaluation of ethanol fermentation from a mixture 
of xylose and glucose by xylose‑fermenting diploid strains

To evaluate xylose fermentation performance under the 
presence of xylose and glucose, ethanol fermentation by 
SE12, MA-R5, and MA-R4 was performed using YPDX 
medium. The fermentation property of SE12 was very simi-
lar to that of MA-R5 (Fig. 3), in accordance with the results 
observed in YPX medium. There was no difference in glu-
cose consumption among the three strains; glucose was ini-
tially consumed within 9 h (Fig. 3a). The xylose consump-
tion rate of SE12 and MA-R5 was significantly increased 
in the presence of glucose relative to that in YPX medium 
(Figs. 2a, 3b). At 72 h, SE12 and MA-R5 consumed xylose 
completely, whereas in MA-R4, 13 g/L xylose remained in 
YPDX (Fig. 3b). SE12 showed lower production of xylitol 
than MA-R5 (Fig.  3c), probably because of the increased 
heterogeneous XDH activity relative to MA-R5 (Fig.  1). 
The xylitol excreted by SE12, MA-R5, and MA-R4 at 72 h 
corresponded to 10.9, 16.7, and 50  % of the consumed 
xylose, respectively. These differences were reflected in 
ethanol production at 72  h; SE12, MA-R5, and MA-R4 
produced 23.3, 22.8, and 18.1  g/L ethanol (Fig.  3d). The 
ethanol yields of SE12, MA-R5, and MA-R4 were similar 
at 0.26, 0.25, and 0.24 g/g of consumed sugar, respectively.

The production of glycerol in YPDX medium by the 
three strains was similar to that in YPX medium (Figs. 2d, 
3e). In contrast, MA-R4 produced a relatively high amount 
of acetic acid when compared with SE12 and MA-R5 
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(Fig. 3f), possibly because of the regeneration of NADPH 
consumed in xylose assimilation. The production of acetic 
acid by SE12 was significantly higher than that by MA-R5 
(Fig. 3f). A similar result was obtained for acetic acid pro-
duction in YPX medium (Fig. 2e). Although SE12 has an 
advantage with respect to reduced release of xylitol com-
pared with MA-R5, the relatively high production of acetic 
acid in SE12 could potentially decrease the ethanol yield.

The similar xylose-fermenting performance in YPX and 
YPDX media between the SE12 and MA-R5 strains dem-
onstrates that the haploid strains obtained in this study 
retain the appropriate genetic background of IR-2 for etha-
nol production from xylose and xylulose. The IR-2-based 
haploid strains are expected to construct improved xylose-
fermenting diploid strains through mating with other indus-
trial haploids. In the present study, the duplication of xylose 
assimilation genes by mating of recombinant haploids was 
found to have little effect on the improvement of ethanol 
fermentation from xylose (Figs.  2, 3). Kim et  al. found 
that the improvement of xylose fermentation by mating of 
xylose-assimilating haploid strains was not derived from 

heterozygosity or genome duplication, but rather resulted 
from the complementation of the defective xylose-assimi-
lation pathways between each recombinant haploid strain 
[20]. Kato et al. reported that improved ethanol production 
by xylose-assimilating mated diploid strains was obtained 
not only from mating but also from an increase in the copy 
number of the XR, XDH, and XK genes [19]. The expres-
sion levels and balance of xylose assimilation enzymes in 
recombinant diploid strains are important for improved eth-
anol fermentation from xylose [6, 16, 18, 29, 37]. Interest-
ingly, the recombinant IR-2 with integrated pXRXDHXK 
or pXRARSdRXK has been reported to have higher activ-
ity of XR and XDH or ARSdR than other recombinant dip-
loid strains with integration of the same plasmid [25, 27, 
28]. These findings may explain why MA-R5 from IR-2 
allowed for similar xylose fermentation to SE12 by the 
integration of a single set of xylose-assimilating genes.

It remains unknown whether the higher acetic acid pro-
duction by SE12 is caused by the heterogeneous XDH 
activity. ENB3009 was found to produce a higher amount 
of acetic acid than MA-R4 and a recombinant strain derived 

Fig. 2   Ethanol fermentation 
over time by the three recombi-
nant yeast strains SE12 (open 
circle), MA-R4 (open square), 
and MA-R5 (filled square) 
in YPX medium. a Xylose 
consumption, b xylitol release, 
c ethanol production, d glycerol 
production, and e acetic acid 
production. Values are the aver-
age values from three independ-
ent experiments
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from ENB2004 with integration of pAUR-XKXDHXR in 
fermentation with a medium containing 50  g/L glucose 
and 20  g/L xylose (data not shown). This result suggests 
that the production of by-products for ethanol production 
in SE12 is related to the background of the haploid strain. 
The use of haploid strains having low productivity of by-
products, in addition to high xylulose-fermenting ability, 
should be considered in future breeding of highly efficient 
ethanol-producing yeasts.

In conclusion, we isolated xylulose-fermentable haploid 
strains having the genetic background of IR-2 and found 
them to be useful as hosts for breeding of xylose-ferment-
ing yeast. Characterization of the hybrid strains harboring 
heterogeneous XDH genes demonstrated the superiority of 
ARSdR (NADP+-dependent XDH) in xylose assimilation; 
most of the selected hybrid strains showed relatively high 
levels of ARSdR activity, and the xylose-fermenting per-
formance of SE12 having the same levels of ARSdR and 
XDH activity was very similar to that of MA-R5 having 
only ARSdR activity. IR-2-based haploid strains with chro-
mosomally integrated pAUR-XKARSdRXR could thus 

provide diploid strains suitable for ethanol fermentation of 
lignocellulosic hydrolysates including xylose by heterozy-
gous mating with haploids from robust industrial yeast hav-
ing tolerance to acid and other fermentation inhibitors.
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